OXFORD CAMBRIDGE AND RSA EXAMINATIONS

 Advanced Subsidiary General Certificate of Education

 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

 Advanced General Certificate of Education}

MATHEMATICS

4726

Further Pure Mathematics 2

Tuesday

6 JUNE 2006
Afternoon
1 hour 30 minutes
Additional materials:
8 page answer booklet
Graph paper
List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find the first three non-zero terms of the Maclaurin series for

$$
(1+x) \sin x,
$$

simplifying the coefficients.

2 (i) Given that $y=\tan ^{-1} x$, prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$.
(ii) Verify that $y=\tan ^{-1} x$ satisfies the equation

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 . \tag{3}
\end{equation*}
$$

3 The equation of a curve is $y=\frac{x+1}{x^{2}+3}$.
(i) State the equation of the asymptote of the curve.
(ii) Show that $-\frac{1}{6} \leqslant y \leqslant \frac{1}{2}$.

4 (i) Using the definition of $\cosh x$ in terms of e^{x} and e^{-x}, prove that

$$
\cosh 2 x=2 \cosh ^{2} x-1 .
$$

(ii) Hence solve the equation

$$
\begin{equation*}
\cosh 2 x-7 \cosh x=3, \tag{4}
\end{equation*}
$$

giving your answer in logarithmic form.

5 (i) Express $t^{2}+t+1$ in the form $(t+a)^{2}+b$.
(ii) By using the substitution $\tan \frac{1}{2} x=t$, show that

$$
\begin{equation*}
\int_{0}^{\frac{1}{2} \pi} \frac{1}{2+\sin x} \mathrm{~d} x=\frac{\sqrt{3}}{9} \pi \tag{6}
\end{equation*}
$$

6

The diagram shows the curve with equation $y=3^{x}$ for $0 \leqslant x \leqslant 1$. The area A under the curve between these limits is divided into n strips, each of width h where $n h=1$.
(i) By using the set of rectangles indicated on the diagram, show that $A>\frac{2 h}{3^{h}-1}$.
(ii) By considering another set of rectangles, show that $A<\frac{(2 h) 3^{h}}{3^{h}-1}$.
(iii) Given that $h=0.001$, use these inequalities to find values between which A lies.

7 The equation of a curve, in polar coordinates, is

$$
r=\sqrt{3}+\tan \theta, \quad \text { for }-\frac{1}{3} \pi \leqslant \theta \leqslant \frac{1}{4} \pi
$$

(i) Find the equation of the tangent at the pole.
(ii) State the greatest value of r and the corresponding value of θ.
(iii) Sketch the curve.
(iv) Find the exact area of the region enclosed by the curve and the lines $\theta=0$ and $\theta=\frac{1}{4} \pi$.

8 The curve with equation $y=\frac{\sinh x}{x^{2}}$, for $x>0$, has one turning point.
(i) Show that the x-coordinate of the turning point satisfies the equation $x-2 \tanh x=0$.
(ii) Use the Newton-Raphson method, with a first approximation $x_{1}=2$, to find the next two approximations, x_{2} and x_{3}, to the positive root of $x-2 \tanh x=0$.
(iii) By considering the approximate errors in x_{1} and x_{2}, estimate the error in x_{3}. (You are not expected to evaluate x_{4}.)
[Question 9 is printed overleaf.]

9 (i) Given that $y=\sinh ^{-1} x$, prove that $y=\ln \left(x+\sqrt{x^{2}+1}\right)$.
(ii) It is given that, for non-negative integers n,

$$
I_{n}=\int_{0}^{\alpha} \sinh ^{n} \theta \mathrm{~d} \theta
$$

where $\alpha=\sinh ^{-1} 1$. Show that

$$
\begin{equation*}
n I_{n}=\sqrt{2}-(n-1) I_{n-2}, \quad \text { for } n \geqslant 2 \tag{6}
\end{equation*}
$$

(iii) Evaluate I_{4}, giving your answer in terms of $\sqrt{2}$ and logarithms.

